On the convergence of Optimized Schwarz Methods by way of Matrix Analysis

نویسندگان

  • Sébastien Loisel
  • Daniel B. Szyld
چکیده

Domain decomposition methods are widely used to solve in parallel large linear systems of equations arising in the discretization of partial differential equations. Optimized Schwarz Methods (OSM) have been the subject of intense research because they lead to algorithms that converge very quickly. The analysis of OSM has been a very challenging research area and there are currently no general proofs of convergence for the optimized choices of the Robin parameter in the case of overlap. In this article, we apply a proof technique developed for the analysis of Schwarz-type algorithms using matrix analysis techniques and specifically using properties of matrix splittings, to the Optimized Schwarz algorithms. We thus obtain new general convergence results, but they apply only to large Robin parameters, which may not be the optimal ones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asynchronous optimized Schwarz methods with and without overlap

An asynchronous version of the optimized Schwarz method for the solution of differential equations on a parallel computational environment is studied. In a one-way subdivision of the computational domain, with and without overlap, the method is shown to converge when the optimal artificial interface conditions are used. Convergence is also proved for the Laplacian operator under very mild condi...

متن کامل

An Optimal Block Iterative Method and Preconditioner for Banded Matrices with Applications to PDEs on Irregular Domains

Classical Schwarz methods and preconditioners subdivide the domain of a PDE into subdomains and use Dirichlet transmission conditions at the artificial interfaces. Optimized Schwarz methods use Robin (or higher order) transmission conditions instead, and the Robin parameter can be optimized so that the resulting iterative method has an optimized convergence factor. The usual technique used to f...

متن کامل

Optimized Schwarz Methods

Optimized Schwarz methods are a new class of Schwarz methods with greatly enhanced convergence properties. They converge uniformly faster than classical Schwarz methods and their convergence rates dare asymptotically much better than the convergence rates of classical Schwarz methods if the overlap is of the order of the mesh parameter, which is often the case in practical applications. They ac...

متن کامل

Optimized Schwarz Methods for Maxwell equations

Over the last two decades, classical Schwarz methods have been extended to systems of hyperbolic partial differential equations, using characteristic transmission conditions, and it has been observed that the classical Schwarz method can be convergent even without overlap in certain cases. This is in strong contrast to the behavior of classical Schwarz methods applied to elliptic problems, for ...

متن کامل

Optimized Schwarz Methods for Maxwell's Equations

Over the last two decades, classical Schwarz methods have been extended to systems of hyperbolic partial differential equations, using characteristic transmission conditions, and it has been observed that the classical Schwarz method can be convergent even without overlap in certain cases. This is in strong contrast to the behavior of classical Schwarz methods applied to elliptic problems, for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009